Lecture 3

• Answer questions from yesterday

from Myhrer talk on spin problem - Jlab users group meeting

Three factors are important.

- The valence quarks move relativistically
- Virtual excitation of anti-quarks in low-lying P-states via one-gluon-exchange.
 In nuclear physics terminology— exchange current corrections.
- The pion cloud of the nucleon.

The cloudy bag model says

$$|N\rangle_{phys}=~Z~|N\rangle_{bare}+\sqrt{P_{N\pi}}~|N\pi\rangle+\sqrt{P_{\Delta\pi}}~|\Delta\pi\rangle$$
 with $Z\sim 0.7$, $P_{N\pi}\sim 0.20-0.25$ and $P_{\Delta\pi}\sim 0.10-0.05$

This pion cloud correction changes the spin observable as follows:

$$\Sigma \to \left\{ Z - \frac{1}{3} P_{N\pi} + \frac{5}{3} P_{\Delta\pi} \right\} \Sigma ,$$

i.e. a reduction by a factor of 0.7 to 0.8.

P906 at Fermilab or J-PARC?

Figure 4: (p+d)/(p+p) Drell-Yan ratios from E866 (open circles) are compared with the expected sensitivites at the 120 GeV Main Injector (solid circles) and the 50-GeV J-PARC (solid squares).

CTEQ6 parton distributions

$$x f(x, Q_0) = A_0 x^{A_1} (1 - x)^{A_2} e^{A_3 x} (1 + e^{A_4} x)^{A_5}$$

	A_0	A_1	A_2	A_3	A_4	A_5
d_v	1.4473	0.6160	4.9670	-0.8408	0.4031	3.0000
u_v	1.7199	0.5526	2.9009	-2.3502	1.6123	1.5917
g	30.4571	0.5100	2.3823	4.3945	2.3550	-3.0000
$\bar{u} + \bar{d}$	0.0616	-0.2990	7.7170	-0.5283	4.7539	0.6137
$s = \bar{s}$	0.0123	-0.2990	7.7170	-0.5283	4.7539	0.6137
$ar{d}/ar{u}$	33657.8	4.2767	14.8586	17.0000	8.6408	-

Outline

- statistical model
- other hadrons
- strangeness

Focus on student projects

- The academic context an undergraduate institution
- Motivation what aspects of hadron structure are accessible to undergraduates? What models can be used?
- Some work done successfully on MCM but really appropriate for Ph.D. theses
 - Parton distributions go beyond CQM
 - Experimental challenge light sea asymmetry in proton
 - Statistical model need only NR quantum mechanics
 - Counting partons zero'th moments
 - Momentum distributions
 - Extensions to other hadrons

Experimental challenge

From DIS and Drell-Yan: light flavor sea asymmetry in the proton

$$\overline{d} > \overline{u}$$

- Usual explanation pion cloud model Thomas, Miller
 - Proton can fluctuate to π^+ n, so scattering from dbars in the π^+ is seen. Fluctuation to π^0 p produces equal numbers of ubars and dbars
 - Many improved meson cloud models

Statistical model – an alternative

- Proposed by Zhang, Zhang and Ma,, Phys. Lett. B 523 (2001) 260. Uses Fock state expansion of the proton in terms of quark and gluon states, together with detailed balance between states.
- Includes quark-gluon splitting and recombination; quark-antiquark creation and annihilation; gluon splitting
- No free parameters
- calculated zero-th moment of light antiquark flavor asymmetry agrees with E866 experiment:

theory: $\bar{d} - \bar{u} = 0.124$ experiment: $\bar{d} - \bar{u} = 0.118 \pm 0.012$

Fock state expansion

$$|p\rangle = \sum c_{i,j,k} |\{uud\}, \{i,j,k\}\rangle >, \qquad \rho_{i,j,k} = |c_{i,j,k}|^2$$

in which $\{uud\}$ represents the valence quarks and $\{i,j,k\}$ represents the number of u-ubar pairs, d-dbar pairs, and gluons, respectively.

Processes included:

detailed balance

$$\rho_A R_{A \to B} = \rho_B R_{B \to A}$$

in which the rates *R* are determined by the number of partons that can split or recombine:

$$|uudg\rangle \ \mathop{\rightleftharpoons}\limits_{1\times 3}^{1} |uud\bar{u}u\rangle \qquad |uudg\rangle \ \mathop{\rightleftharpoons}\limits_{1\times 2}^{1} |uud\bar{d}d\rangle \qquad |uud\rangle \ \mathop{\rightleftharpoons}\limits_{1\times 3}^{3} |uudg\rangle$$

The relative probabilities of Fock state components are then determined:

$$\frac{\rho_{ijk}}{\rho_{000}} = \frac{1}{i!(i+2)!j!(j+1)!k!}$$

and an excess of dbar (j) over ubar (i) states in the proton sea results:

$$\bar{d} - \bar{u} = 0.124$$

Fock state probabilities (from Zhang et al.)

Table 1
The probabilities, $\rho_{l,j,k}$, of finding the quark–gluon Fock states of the proton, calculated using the principle of detailed balance without any parameter. $|\{q\}, \{i, j, k\}\rangle$ is the subsemble of Fock states, i is the number of $u\bar{u}$ quark pairs, j is the number of $d\bar{d}$ pairs, and k is the number of gluons

i	j	$ \{q\}, \{i, j, 0\}\rangle$	$\rho_{l,j,0}$	$\rho_{l,j,1}$	PI, J,2	$\rho l, j, 3$	$\rho_{1,j,4}$	
0	0	uud	0.167849	0.167849	0.083924	0.027975	0.006994	
1	0	uudüu)	0.055950	0.055950	0.027975	0.009325	0.002331	
0	1	uuddd	0.083924	0.083924	0.041962	0.013987	0.003497	
1	1	ससर्वसम्बद्धे त	0.027975	0.027975	0.013987	0.004662	0.001166	
0	2	wwd.dddd	0.013987	0.013987	0.006994	0.002331	0.000583	
2	0	uu düuüu)	0.006994	0.006994	0.003497	0.001166	0.000291	
1	2	uudüudddd)	0.004662	0.004662	0.002331	0.000777	0.000194	
2	1	uudüuüudd}	0.003497	0.003497	0.001748	0.000583	0.000146	
0	3	wwddddddd)	0.001166	0.001166	0.000583	0.000194	0.000049	
3	0	uudüuüuüu)	0.000466	0.000466	0.000233	0.000078	0.000019	
								٠.

Student exercises

- Why is a (valence quark + one-gluon) state as probable as the valence quark state (bare proton?)
- Reproduce the table only a few lines of Mathematica or MatLab code

Momentum distributions

- Monte Carlo code used to determine momentum distribution for each state of *n* partons in rest frame of proton.
- Sum over all Fock states to get xf(x).
- Students reproduced Zhang et al. results. They used RAMBO Monte Carlo code of Kleiss, Stirling and Ellis. Initial calculations carried out for massless partons.

Counting the ways ...

- Need to determine the distribution of momenta for *n* partons such that their momenta add up to zero in the proton rest frame, and their energies add up to the proton rest mass.
- For three partons (leading term of expansion):

$$\vec{p}_1 + \vec{p}_2 + \vec{p}_3 = 0$$
, and $E_1 + E_2 + E_3 = 938$ MeV

Monte Carlo Method

Kleiss et al formulate a Monte Carlo method for calculating phase space volume and consequently probability distributions for n massless or massive particles. The method first generates n random massless 4-momenta q_i^{μ} , then boosts and scales the q_i^{μ} to p_i^{μ} with $\sum_i p_i^0 = w$ and $\sum_i \mathbf{p_i} = \mathbf{0}$ by the conformal transformation. If there are massive particles then we transform again to 4momenta k_i^{μ} with mass m_i by

$$\mathbf{k_i} = \xi \mathbf{p_i}$$

$$k_i^0 = \sqrt{m_i^2 + (\xi p_i^0)^2}$$

where ξ satisfies $w = \sum_{i=1}^{n} \sqrt{m_i^2 + (\xi p_i^0)^2}$.

Using this algorithm with enough iterations we can calculate momentum, energy, and Bjorken-x distributions for any particle in a certain state.

MC distribution compared to theory

Consider a particle with 3 partons, one with mass. The phase space integral

$$V = \int \delta(M - \sum E_i) \delta^3(\sum \mathbf{p_i}) \prod_{i=1}^3 \frac{d^3 p_i}{2E_i}$$

where $E_1 = \sqrt{p_1^2 + m_1^2}$, $E_2 = p_2$, and $E_3 = p_3$. We calculated this integral both analytically and with the Monte Carlo method and compared the distributions for both p_1 and p_2 . The results agreed perfectly.

Momentum distribution for p₁

is

Momentum distribution for p₂

Momentum distributions for the proton

Monte-Carlo calculation of momentum distribution of each *n*-parton state in the proton rest frame; then sum over all Fock states.

Figure 1: Comparison of statistical model calculation with E866 experimental results [3] for $\bar{d} - \bar{u}$.

ratio

Figure 2: Comparison of statistical model calculation with E866 experimental results [3] for \bar{d}/\bar{u} .

- calculated ratio is approximately constant
- need non-perturbative processes (meson cloud)

Extension to the pion

M.A., E.M.H., Phys. Lett. B 611 (2005) 111 - with contributions from Mike Clement

$$|\pi^{+}> = \sum_{i,j,k} c_{ijk} |\{u\bar{d}\}\{ijk\}>$$

- leading term in Fock state expansion is 2-parton state
- light quark sea is symmetric
- starting scale determined by requiring that first and second moments of valence quark distribution at $Q^2 = 4 \text{ GeV}^2$ agree with Sutton et al.
- DGLAP evolution carried out with Kumano's code BF1

Fock state representation

For the Fock state expansion

$$|\pi^{+}> = \sum_{i,j,k} c_{ijk} |\{u\bar{d}\}\{i,j,k\}>$$

in which *i* is the number of uubar pairs, *j* the d-dbar pairs, and *k* the gluons in the sea, we represent the state with 1 u-ubar pair, 1 d-dbar pair, and 3 gluons:

$$|\{u\bar{d}\}\{1,1,3\}> \equiv |u\bar{d}u\bar{u}d\bar{d}ggg>$$

Figure 3: Our results for parton density distributions x q(x) and x g(x) for the pion. Solid curve: valence quark distribution; long-dashed curve: sea quark distribution; short-dashed curve: gluon distribution.

Figure 5: Our results (solid curve) for the valence quark distribution $x\,v(x)$ in the pion, compared to the calculation of Hecht, Roberts and Smith [20] (dashed curve) and the experimental results of Conway et al. [16]. Both calculations were evolved to $Q^2=16~{\rm GeV}^2$ of the E615 experiment.

student projects

Michael Clement

- Extension to pion, porting Monte Carlo and evolution codes
- Poster at DNP, CEU Tucson, Fall 2003

Philip Opperman

- Add strange sea of proton, include mass of strange quarks in Monte Carlo and detailed balance
- Poster at DNP, CEU Chicago, Fall 2004

Sierra Gardner

- Extension to pentaquark
- Poster at DNP, CEU Chicago, Fall 2004

• Blair Garner

- Extension to kaon
- Poster at SACNAS, Fall 2005

• Tom Shelly and Stephanie Harp

- More work on kaon, extension to lambda
- Posters at DNP, CEU Nashville, Fall 2006